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Fermi-Pasta-Ulam b lattice: Peierls equation and anomalous heat conductivity
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The Peierls equation is considered for the Fermi-Pasta-Ulamb lattice. Explicit form of the linearized
collision operator is obtained. Using this form the decay rate of the normal-mode energy as a function of wave
vector k is estimated to be proportional tok5/3. This leads to thet23/5 long-time behavior of the current
correlation function, and, therefore, to the divergent coefficient of heat conductivity. These results are in good
agreement with the results of recent computer simulations. Compared to the results obtained through the mode
coupling theory our estimations give the samek dependence of the decay rate but a different temperature
dependence. Using our estimations we argue that adding a harmonic on-site potential to the Fermi-Pasta-Ulam
b lattice may lead to finite heat conductivity in this model.
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I. INTRODUCTION

The Peierls equation has played an important role in
derstanding properties of solids since its original derivat
by Peierls@1,2#. It was successfully used for qualitative e
planation of heat conduction in dielectrics and for predict
of such phenomena as second sound and Poiseuille flow@3#.
In spite of these successes quantitative predictions are
to make due to the enormous complexity of the equat
even for solids with simple dispersion laws. It is well know
that approximating the solid by isotropic continuum leads
divergent heat conductivity even in three dimensions if o
three-phonon collisions are considered@2,4#. This divergence
can be eliminated if more careful analysis of the dispers
relations is performed@5#. In this paper we would like to
consider the collision operator of the linearized Peierls eq
tion for a simple one-dimensional model: linear chain w
quartic interaction also known as Fermi-Pasta-Ulam~FPU! b
lattice.

One-dimensional lattices have drawn considerable at
tion since the original work of Fermi, Pasta, and Ulam@6#
and originated a vast area of research@7#. It is now well
established by computer simulations that the heat condu
ity in FPU lattices diverges when the size of the lattice go
to infinity @8–12#. The simulations give a power law depe
dence of the heat conductivity on the number of particleN
as approximatelyN2/5. This form ofN dependence is relate
to the t23/5 long-time behavior of the current correlatio
function. Theoretical work in this area@9,10# was based on
the application of the mode coupling theory@13,14#. Appli-
cation of Peierls equation to the analysis of heat conduc
in FPU lattices was limited to qualitative estimatio
@1,10,15#. It is therefore of interest to check if more caref
analysis of the Peierls equation can explain some of
anomalous properties of the FPU chains.

To this end we will consider the explicit form of th
Peierls equation for the FPU lattice in Sec. II. In Sec. III w
apply this equation to estimate the long-time behavior of
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current correlation function as well as the wave-vector
pendence of the decay rate for mode energies. Conclu
remarks are given in Sec. IV.

II. THE PEIERLS EQUATION

The Hamiltonian for the FPUb lattice is

H5(
r

pr
2

2m
1(

r

C

2
~ur 112ur !

21(
r

l

4
~ur 112ur !

4.

~1!

Hereur is the displacement of the particle at siter, pr is the
momentum conjugate tour , andm is the mass of the par
ticle. We also usel as a coupling constant. Cyclic bounda
conditions are imposed, i.e.,ur 1N5ur , whereN is the num-
ber of particles. We can introduce action variablesJk and
angle variablesak related tour andpr through

(
r

ure
2 ikr5A N

2mSAJk

vk
eiak1AJ2k

v2k
e2 ia2kD ,

(
r

pre
ikr5 iAmN

2
~AJkvke

2 iak2AJ2kv2ke
ia2k!. ~2!

Herek52pn/N is a dimensionless wave vector andn is an
integer. The wave vector is usually restricted to the inter
2p,k<p but any other interval of length 2p can be cho-
sen. The frequenciesvk are given by

vk52AC

mUsin
k

2U. ~3!

In the action and angle variables Hamiltonian~1! has the
form
©2003 The American Physical Society24-1
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H5(
k

vkJk1l (
ee8e9e-561

kk8k9k-

Veke8k8e9k9e-k-

3A JkJk8Jk9Jk-

vkvk8vk9vk-
ei (eak1e8ak81e9ak91e-ak-). ~4!

CoefficientVeke8k8e9k9e-k- is given by

Veke8k8e9k9e-k-5
1

Nm2
sin

ek

2
sin

e8k8

2
sin

e9k9

2
sin

e-k-
2

3cos
ek1e8k81e9k91e-k-

2

3Dek1e8k81e9k91e-k- . ~5!

HereD l is given in terms of Kroneckerd ’s as

D l5(
m

d2pm,l ~6!

with m being an integer. Note that only terms withm50 and
m561 have to be considered in Eq.~5!. Indeed, the maxi-
mum length for the sum of four wave vectors is 4p but
coefficient~5! vanishes in this case.

In the problem of heat conduction the quantities of int
est are the mode energyEk5vkJk and the total heat curren
given by

j h5(
k

vkvkJk5(
k

vkEk , ~7!

wherevk is the group velocity. Note thatEk and j h represent
only the harmonic parts of the corresponding quantities,
assumed that the contributions from the anharmonic cor
tions are small for weak coupling. The approximate tim
evolution of the average energy of the normal mode for w
coupling and for the lattice with no temperature gradient a
close to the thermal equilibrium is given by the homog
neous linearized Peierls equation@1,2,4#. The equation is
usually considered in the context of quantum mechanics
lattices with cubic anharmonicity. Derivation of this equati
for the lattice with classical Hamiltonian~4! is straightfor-
ward. Note that in this case the following conditions on wa
vectors and frequencies have to be satisfied simultaneou

6k6k86k96k-50, or 62p,

6v6v86v96v950 ~8!

with the same ordering of signs for both relations. With thk
dependence of frequencies~3! the relations can be satisfie
only when two plus signs and two minus signs appear in
~8!, i.e., in quantum-mechanical terms, only the proces
conserving the number of phonons contribute. In additi
although normal processes exist for this number conser
case, they only result in exchange of quasimomenta betw
two colliding phonons, and, therefore, cannot change
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phonon distribution. Thus, only umklapp number conserv
processes contribute in the collision integral of the Peie
equation. We can write the linearized Peierls equation for
average energyĒk of modek, where overlining denotes av
eraging over a distribution function. The equation has
form

]Ēk

]t
52

~24lkBT!2p

N2m4

3 (
k8k9k-

F uVkk82k92k-u2d~vk1vk82vk92vk-!

vkvk8
2 vk9

2 vk-
2

3~vkĒk1vk8Ēk82vk9Ēk92vk-Ēk-!G . ~9!

The collision operator on the right-hand side of Eq.~9! is a
Hermitian operator in the Hilbert space with the inner pro
uct given by

^gu f &5E
2p

p

dkgk* f k . ~10!

It can be shown that the collision operator has a continu
spectrum that is bounded from below by zero@16,17#. We
wrote Eq.~9! in the form that makes it easy to see thatĒk

5const andĒk5const/vk are eigenstates of the collisio
operator with zero eigenvalues. The first eigenstate co
sponds to the conservation of the total energy. The sec
one corresponds to the conservation of the sum of ac
variables for all modes~or, in quantum-mechanical languag
to the conservation of the number of phonons!. Note that the
second eigenstate has an infinite norm.

We can write the average energy as

Ēk5kBT1dĒk , ~11!

wherekBT is the equilibrium value ofĒk and dĒk is a de-
viation from that value. If we want the average energies
approach their equilibrium value ofkBT for long times then
dĒk should be orthogonal to both of the zero eigenva
eigenstates of the collision operator@4#, i.e., we must have

E
2p

p

dkdĒk50, E
2p

p

dk
dĒk

vk
50. ~12!

Thed function appearing in Eq.~9! is meaningful only in
the limit of N→`. In this limit we replace the sums b
integrals and Kroneckerd ’s by d function according to

2p

N (
k

→E dk,
N

2p
dk,k8→d~k2k8!. ~13!

After the limit is taken we will have terms containing prod
ucts of twod functions in the integrand. Therefore, two in
tegrations can be rather easily performed. Integrations ca
done much more easily and the resulting expressions ha
4-2
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simpler form if the wave vector is restricted to the interval from 0 to 2p rather then from2p to p. Using explicit expressions
for Vkk82k92k- andvk we obtain after tedious but straightforward calculations

]Ēk

]t
52

~3lkBT!2sin
k

2

4pC7/2m1/2 S E
int

dk8

sin
k8

2
Ēk8

A1

4
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k

2
1 cos

k8

2
D 2

2 sin
k

2
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k8

2

2E
0

2p

dk8
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k8

2
Ēk82

1

2
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k

2
Ēk
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4
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k

2
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k8

2
D 2

1 sin
k

2
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2
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Subscriptint in the first integral in Eq.~14! means that the
integral is taken over the interval where the integrand is r
This interval consists of two segments: from 0 tol 1(k) and
from l 2(k) to 2p, wherel 1(k) and l 2(k) are the two solu-
tions of the transcendental equation fork8:

1

4 S cos
k

2
1cos

k8

2 D 2

2 sin
k

2
sin

k8

2
50. ~15!

The solutions, which depend onk as a parameter, satisf
l 1(k)< l 2(k). In the following section we will use Eq.~14!
to estimate the long-time behavior of the heat current co
lation function and theN dependence of the coefficient o
thermal conductivity.

III. THE LONG-TIME BEHAVIOR OF THE CORRELATION
FUNCTION

The coefficient of thermal conductivity can be calculat
by using the current correlation function. The correlati
function is defined as

DN~ t !5
1

NE d$Jk%d$ak% j ~ t ! j ~0!
e2H/kBT

Z
. ~16!

Here $Jk% and $ak% denote the set of action and angle va
ables for all the modes,Z is the partition function for the
equilibrium ensemble, andj is the total-energy current. Th
coefficient of heat conductivity is given by

k5
1

kBT2
lim
t→`

E
0

t

dt lim
N→`

DN~t!. ~17!

We can rewriteDN(t) as @18#

DN~ t !5
1

NE d$Jk%d$ak% j j ~0!r̃~ t ! ~18!

with

r̃~ t !5e2 iLt S j ~0!

j

e2H/kBT

Z
1

e2H/kBT

Z D , ~19!

where L is the Liouville operator corresponding to Ham
tonian ~4! andj is an auxiliary parameter ensuring the co
rect dimensions forr̃(t). The parameter does not appear
05612
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-

the final expressions. In going from Eq.~17! to Eq. ~18! we
also used the fact that the average current over the equ
rium distribution is zero. Equation~18! shows that the cor-
relation function can be expressed through the average
rent per particle with the averaging performed over t
nonequilibrium distribution function~19!. If we approximate
the total heat current by its harmonic part~7! we can see tha
it depends only on the action variables and, therefore,
time evolution of the correlation function can be reduced
the time evolution of the average mode energies which
governed by Eq.~14!. Note that if only harmonic terms ar
kept in distribution function~19! at t50 then the initial av-
erage energy for modek is

Ēk~0!5kBT1
2vkkB

2T2

j
. ~20!

This has the form given in Eq.~11! with the deviation from
kBT orthogonal to both of the zero eigenvalue eigenstate
the collision operator. Therefore, we expect the aver
mode energies to approachkBT for long times. To estimate
the time behavior ofĒk based on~14! we will use the
relaxation-time approximation@3#. We assume that the en
ergy of each mode approaches zero with a characteristic
tk which depends on the wave vector, i.e.,

]Ēk

]t
'2

1

tk
~Ēk2kBT!. ~21!

Some plausibility arguments in support of this approximat
were given in Refs.@5,19#. In this approximation and forN
→` the correlation function~for which we now drop the
subscriptN) is given by

D~ t !5
2kB

2T2

p E
0

p

dke2t/tkvk
2 . ~22!

Since the decay rate for energy of the normal mode witk
50 is zero~due to the conservation of the total momentu!
4-3
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we can expect 1/tk to behave as some positive power ofk for
small k. The long-time behavior ofD(t) in Eq. ~22! will be
determined by the small-k behavior of 1/tk . Following Ref.
@5# we will further assume that thek dependence of 1/tk for
small k is the same as in the multiplicative part of the col
sion operator in Eq.~14!.

Both the relaxation-time approximation and the assum
tion that thek dependence of the relaxation rate for smallk is
the same as in the multiplicative part of the collision opera
has been widely used in the theory of heat conduction
insulators@3,5#. A convincing justification of both assump
tions, however, is lacking. Reference@5# tries to justify both
assumptions at least for wave vectors with smallk by the
following reasoning. If only the multiplicative part was ke
in the collision operator the resulting equation would d
scribe a physical situation when all modes except modek are
in equilibrium. In general this is not the case. However,
any initial nonequilibrium distribution of energy all mode
except those with very smallk quickly relax to equilibrium.
As a result as far as the small-k modes are concerned after
short time the physical situation is similar to the one ju
described and the integral part of the collision operator
comes negligible compared to the multiplicative part.

If we accept both approximations for Eq.~14! then we
expect 1/tk}sin2(k/2)I (k) with

I ~k!5E
0

2p

dk8
1

A1

4
S cos

k

2
1cos

k8

2
D 2

1sin
k

2
sin

k8

2

.

~23!

This integral can be reduced to an elliptic integral of the fi
kind through the substitutionx5tan(k8/4):

I ~k!}E
0

`

dx
1

APk~x!
, ~24!

where

Pk~x!5S 12cos
k

2D 2

x418S sin
k

2D x322S sin2
k

2D x2

18S sin
k

2D x1S 11cos
k

2D 2

. ~25!

Integral ~24! can be reduced to the Legendre normal fo
and its k dependence can be expressed in terms of thk
dependence for the roots of the fourth-order polynomial~25!
@20#. Since the calculations are rather involved and we
interested only in the small-k behavior ofI (k) we give here
a less rigorous but simpler estimation that gives the sa
result for smallk. We expand the coefficients in the polyn
mial in powers ofk and keep the lowest-order terms in fro
of each monomial to get
05612
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0

`

dx
1

Ak4

64
x414kx32

k2

2
x214kx12

. ~26!

Note that for positivek the denominator remains positive i
the integration range since

k4

64
x42

k2

2
x212.0, ~27!

as can be checked by solving the corresponding quad
equation forx2. Introducing the new variabley5k1/3x we
obtain

I ~k!}
1

k1/3
E

0

`

dy
1

Ak8/3

64
y414y32

k4/3

2
y214k2/3y12

.

~28!

The integral appearing in Eq.~28! is finite and remains finite
for k50. As a result, for smallk we haveI (k)}k21/3 and,
therefore,

1

tk
}k5/3. ~29!

With this k dependence for the relaxation rate the time d
pendence of the correlation function is determined by
following integral:

D~ t !}E
0

p

dke2k5/3Ktvk
2 . ~30!

HereK is a positive constant. Keeping in mind thatvk is a
constant for smallk the long-time behavior ofD(t) is esti-
mated to be

D~ t !}
1

t3/5
. ~31!

This implies that the heat conductivity coefficientk diverges.
Indeed, we have

k} lim
t→`

E
0

t

dt
1

t3/5
} lim

t→`

t2/5. ~32!

Clearly the divergence ofk does not mean that the energ
propagates through the lattice instantaneously. It just imp
that the Fourier heat law is not valid in the infinite FPUb
lattice. We can also estimate the dependence ofk on the size
of the lattice. Following Ref.@8# we restrict the integral in
Eq. ~17! to times smaller than the characteristic time for t
energy propagationN/vk . This leads to the followingN de-
pendence fork:

k}N2/5. ~33!
4-4
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Thus we can see thatk diverges in the thermodynamic lim
which is consistent with Eq.~32!.

Apart from thek dependence of the decay rate for t
mode energy, its temperature dependence is also of inte
It follows from Eq.~14! that as a function of temperature th
decay rate is proportional toT2.

The estimations we have obtained are in rather g
agreement with the results of computer simulations. The
vergence of the heat conductivity coefficient asNm with m
'0.37 was observed in the numerical studies of the FPUb
model @8,9,11,12#. This result is very close to estimatio
~33!. Similarly, the k5/3 dependence of the decay rate f
mode energy was observed@9#. The temperature dependen
of the decay rate reported in Ref.@9# is very close toT2 for
weak coupling.

In Ref. @9# the same types oft dependence for the corre
lation function andN dependence fork were obtained by
using the mode coupling theory. As a function of temperat
the decay rate obtained through the mode coupling the
behaves asT4/3 in the limit of weak coupling and asT1/4 for
strong coupling@9#. Thus, the temperature dependence in
weak coupling limit is different from ourT2 estimation.
Note, however, that according to Ref.@9# the mode coupling
results should be valid for strong coupling and on very lo
time scales. In general, the mode coupling theory as use
Ref. @9# allows one to make some general statements ab
the long-time behavior of the current correlation function
a class of one-dimensional lattices while Eq.~14! gives a
more detailed picture of the energy equipartition between
normal modes for the special case of theb FPU lattice for
the weak coupling case. If solved numerically, Eq.~14! will
allow for the quantitative comparison of the energy equip
tition given by the Peierls equation to the one observed
computer simulations. We will not attempt here to analy
the relation between our result and the mode coupling the
although this point clearly deserves attention.

In a recent publication@21# it is claimed thatk should
diverge with system sizeL as L1/3 for all momentum con-
serving one-dimensional systems. So far the most car
computer simulation@11# fails to confirm this claim. At
present, therefore, this issue remains unsettled.

It is well known that for systems such as a gas of h
spheres or Lorentz gas it is impossible to obtain the cor
long-time behavior for the correlation functions if one us
only the kinetic equation@13#. This is because for those sy
tems the spectrum of the collision operator is discrete. A
result if only the kinetic equation is used the long-time b
05612
st.
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havior is determined by the smallest nonzero eigenvalue
the collision operator and has an exponential form. In c
trast, in our case the collision operator has a continuous s
trum that is bounded from below by zero. This fact allow
for the nontrivial time dependence of the correlation functi
to be obtained already in the framework of the kinetic eq
tion.

IV. CONCLUDING REMARKS

Applying the Peierls equation to the FPUb lattice we
estimated the wave vector and temperature dependenc
the decay rate of the average mode energy, the long-t
behavior of the current correlation function, and the dep
dence of the coefficient of heat conductivity on the size
the lattice. The obtained results are in good agreement w
the results of the recent computer simulations. As we use
number of strong assumptions it can be of interest to so
Eq. ~14! numerically in order to verify if the assumptions a
correct and whether the time evolution of mode energ
given by Eq.~14! is compatible with the results of compute
simulations for the case of weak coupling.

Recently lattices with external substrate potentials dr
considerable attention since some of them show finite h
conductivity forN→` @10,22–25#. We can apply our analy-
sis of Sec. III to show that the FPU lattice with added h
monic on-site potential of the form( rur

2 is likely to have
finite heat conductivity for infinite lattice. It is easy to sho
that in this case fork→0 the harmonic frequency tends to
constant value while the group velocity becomes prop
tional tok. The energy of the normal mode withk50 is still
a constant of motion since coefficient~5! vanishes when a
least one of thek’s is zero. Therefore, we can expect th
decay rate of the mode energy to behave askn for small k.
This will lead to thet23/n long-time behavior of the curren
correlation function and, therefore, finite heat conductiv
for n,3. Thus, if adding the harmonic on-site potential do
not appreciably change thek5/3 wave-vector dependence o
the decay rate, we can expect to find finite heat conducti
in this case.
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