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Fermi-Pasta-Ulam g lattice: Peierls equation and anomalous heat conductivity
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The Peierls equation is considered for the Fermi-Pasta-Uatattice. Explicit form of the linearized
collision operator is obtained. Using this form the decay rate of the normal-mode energy as a function of wave
vector k is estimated to be proportional #3. This leads to the™%® long-time behavior of the current
correlation function, and, therefore, to the divergent coefficient of heat conductivity. These results are in good
agreement with the results of recent computer simulations. Compared to the results obtained through the mode
coupling theory our estimations give the sakieéependence of the decay rate but a different temperature
dependence. Using our estimations we argue that adding a harmonic on-site potential to the Fermi-Pasta-Ulam
B lattice may lead to finite heat conductivity in this model.
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[. INTRODUCTION current correlation function as well as the wave-vector de-
pendence of the decay rate for mode energies. Concluding
The Peierls equation has played an important role in unfemarks are given in Sec. IV.

derstanding properties of solids since its original derivation

by Peierls[1,2]. It was successfully used for qualitative ex-

planation of heat conduction in dielectrics and for prediction Il. THE PEIERLS EQUATION

of such phenomena as second sound and Poiseuille/ #pw The Hamiltonian for the FP\B lattice is

In spite of these successes quantitative predictions are hard

to make due to the enormous complexity of the equation )

even for solids with simple dispersion laws. It is well known Pr C A

that approximating the solid by isotropic continuum leads to 1 =2 ﬁJFZ E(uf+1_uf)2+2 Z(uf+1_ur)4'

divergent heat conductivity even in three dimensions if only (1)

three-phonon collisions are considef@¢4]. This divergence

can be eliminated if more careful analysis of the dispersion ) ] ) ] ]

relations is performed5]. In this paper we would like to Hereu is the displacement of the particle at sitep; is the

consider the collision operator of the linearized Peierls equal’omentum conjugate ta,, andm is the mass of the par-

tion for a simple one-dimensional model: linear chain withticle. We also use. as a coupling constant. Cyclic boundary

quartic interaction also known as Fermi-Pasta-Ul@mRUu) g conditions are imposed, i.&l, . y=U,, whereN is the num-

|lattice. ber of particles. We can introduce action variablgsand

One-dimensional lattices have drawn considerable atterRngle variablesy, related tou, andp, through
tion since the original work of Fermi, Pasta, and Ulg&h

and originated a vast area of reseaf@h It is now well N 3 3
established by computer simulations that the heat conductiv- E ue K= /—( \/ze‘“k+ \/;ke“ak),
ity in FPU lattices diverges when the size of the lattice goes ' 2m Wk w-—k
to infinity [8—12]. The simulations give a power law depen-
dence of the heat conductivity on the number of partitles
as approximatel\N?®. This form ofN dependence is related > pekr=i /@( V3o % —J_ 07K, (2)
to the t~%5 long-time behavior of the current correlation T 2 KK B
function. Theoretical work in this ard®,10] was based on
the application of the mode coupling thed3,14]. Appli-
cation of Peierls equation to the analysis of heat conductio
in FPU lattices was limited to qualitative estimations
[1,10,15. It is therefore of interest to check if more careful
analysis of the Peierls equation can explain some of th
anomalous properties of the FPU chains.

To this end we will consider the explicit form of the C
Peierls equation for the FPU lattice in Sec. Il. In Sec. Il we w=2 \[ﬁ
apply this equation to estimate the long-time behavior of the

Herek=2=n/N is a dimensionless wave vector ands an
rihteger. The wave vector is usually restricted to the interval
—a<k= but any other interval of length72 can be cho-
gen. The frequencies, are given by

k
smz . 3)

In the action and angle variables Hamiltoniél) has the
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phonon distribution. Thus, only umklapp number conserving
H:; ok tN X Ve anrenen processes contribute in the collision integral of the Peierls
kKKK equation. We can write the linearized Peierls equation for the

r_n ’”:tl e . .
e average energf, of modek, where overlining denotes av-

Jdir dindim ) , " eraging over a distribution function. The equation has the
X el(eak+e agrt+ € agrte akw)_ (4) form
WKWy WynWym

= 2
Coefﬁcientvekérkrerrkrrewkm is giVen by aEk - _ (24)\kBT) w

7 N2m4
V 1 ) Ek ) E! k! ) 6” kl! ) E!H kII! | | 2
Eke/k/é//k/lfmk///:_S|n_ Sin Sin Sin kar — K —K" 5((Uk+ Wyr — Wy — wk/ll)

Nm2 2 2 2 2 % —

k'K"K" Wy W, Wy WOy

€k+ E!k!+ellkll+€!!!k”!
X COS 5 . . L .
X(a)kEk+ u)k/Ek/_a)k//Ek//_(l)kmEkm) . (9)

><AEk+E’k,+E’,k,,+6/,,k”’ . (5)

HereA, is given in terms of Kroneckes's as The collision operator on the right-hand side of E9). is a
Hermitian operator in the Hilbert space with the inner prod-
uct given by

A=2 Syom, (6)
m m
L | (olt)= [ akgiti 10
with m being an integer. Note that only terms with=0 and -7

m= *+1 have to be considered in E(). Indeed, the maxi- o )
mum length for the sum of four wave vectors isr4ut |t can be shown that the collision operator has a continuous

coefficient(5) vanishes in this case. spectrum that is bounded from below by zédd®,17. We

In the problem of heat conduction the quantities of inter-wrote Eq.(9) in the form that makes it easy to see izt
est are the mode enerd = wiJy and the total heat current =const andE,=consti, are eigenstates of the collision
given by operator with zero eigenvalues. The first eigenstate corre-
sponds to the conservation of the total energy. The second
=S vodi=> v,E (77 one corresponds to the _conservation of the_ sum of action
g TRk K=k variables for all modeéor, in quantum-mechanical language,
to the conservation of the number of phonpriéote that the
wherev, is the group velocity. Note thd, andj, represent second eigenstate has an infinite norm.
only the harmonic parts of the corresponding quantities, itis We can write the average energy as
assumed that the contributions from the anharmonic correc- . .
tions are small for weak coupling. The approximate time E=kgT+ SE,, 11
evolution of the average energy of the normal mode for weak o o
coupling and for the lattice with no temperature gradient andvherekgT is the equilibrium value o, and §E, is a de-
close to the thermal equilibrium is given by the homoge-viation from that value. If we want the average energies to
neous linearized Peierls equatiph,2,4. The equation is approach their equilibrium value &&T for long times then
usually considered in the context of quantum mechanics foggk should be orthogonal to both of the zero eigenvalue

lattices with cubic anharmonicity. Derivation of this equation gjgenstates of the collision operafdd, i.e., we must have
for the lattice with classical Hamiltonia() is straightfor-

ward. Note that in this case the following conditions on wave - . - 5Ek
vectors and frequencies have to be satisfied simultaneously: J dksE, =0, f dk—=0. (12
—ar - Wy

+kxk'=k"=k”=0, or =2, ) o _ . _
The 6 function appearing in Eq9) is meaningful only in

+toro fo'*rw' =0 (8)  the limit of N—co. In this limit we replace the sums by
integrals and Kronecke$'s by & function according to

with the same ordering of signs for both relations. With khe ) N
dependence of frequenci€d) the relations can be satisfied ™ D
only when two plus signs and two minus signs appear in Eq. N Zk _)f dk, ﬁg"'k'_)g(k K’). (13
(8), i.e., in quantum-mechanical terms, only the processes
conserving the number of phonons contribute. In additionAfter the limit is taken we will have terms containing prod-
although normal processes exist for this number conservingcts of two é functions in the integrand. Therefore, two in-
case, they only result in exchange of quasimomenta betwedngrations can be rather easily performed. Integrations can be
two colliding phonons, and, therefore, cannot change thelone much more easily and the resulting expressions have a
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simpler form if the wave vector is restricted to the interval from 0 torather then from- 7 to 7. Using explicit expressions
for Vi v —» and o, we obtain after tedious but straightforward calculations

) k k' __ k' 1 k_
— 3N\kgT)“sin— Sin—E,/ sin—E,,— —sin—E
§ (3\kgT) > k ) 5 B~ 5 SINSE
B f dk’ —f dk’
Jt 47 Comt2 | Jint 1/ k k'\2 k k' Jo 1/ k K\ ok K
—| cos—+ cos—| — sin—sin— —| cos-+ cos—| + sin—sin—
2 2 2 2 2 2 2 2

(14)

Subscriptint in the first integral in Eq(14) means that the the final expressions. In going from E(.7) to Eq. (18) we
integral is taken over the interval where the integrand is realalso used the fact that the average current over the equilib-
This interval consists of two segments: from 0l{¢k) and  rium distribution is zero. Equatiofil8) shows that the cor-
from |,(k) to 27, wherel,(k) andl,(k) are the two solu- relation function can be expressed through the average cur-

tions of the transcendental equation for rent per particle with the averaging performed over the
nonequilibrium distribution functio(19). If we approximate
1/ k k'\> kK the total heat current by its harmonic péfj we can see that

7| ©0S; TCosy | — singsin-=0. 15 depends only on the action variables and, therefore, the

time evolution of the correlation function can be reduced to
The solutions, which depend dnas a parameter, satisfy the time evolution of the average mode energies which is
[1(K)=<I,(Kk). In the following section we will use Eq14)  governed by Eq(14). Note that if only harmonic terms are
to estimate the long-time behavior of the heat current correkept in distribution function(19) att=0 then the initial av-
lation function and theN dependence of the coefficient of erage energy for modeis
thermal conductivity.
20,k3T?

3

Ill. THE LONG-TIME BEHAVIOR OF THE CORRELATION

FUNCTION Ex(0)=kgT+

(20)
The coefficient of thermal conductivity can be calculated
by using the current correlation function. The correlation

function is defined as This has the form given in Eq11) with the deviation from

kgT orthogonal to both of the zero eigenvalue eigenstates of
1 e H/kgT the collision operator. Therefore, we expect the average
Dyn(t)= NJ d{J td{ay} j(t)j(0) - (16)  mode energies to approa&gT for long times. To estimate
the time behavior ofE, based on(14) we will use the

Here{J,} and{«,} denote the set of action and angle vari- rélaxation-time approximatiof3]. We assume that the en-

ables for all the modesZ is the partition function for the ©rgy of each mode approaches zero with a characteristic time

equilibrium ensemble, angis the total-energy current. The 7« Which depends on the wave vector, i.e.,

coefficient of heat conductivity is given by

K= ! lim ftdrlim Dn(7). (17 —~—T—k(Ek—kBT)- (21)

kBTZt—>oc 0 N— o

We can rewriteD(t) as[18
n(D) as(18] Some plausibility arguments in support of this approximation

1 ~ were given in Refs[5,19]. In this approximation and foN
Dn(t)= NJ d{JIfd{a} £j(0)p(t) (18 o the correlation functior{for which we now drop the
subscriptN) is given by
with

~ B j(O) efH/kBT efH/kBT ZkZBTZ - -
_ iLt — t/m, 2
bt =e ( c otz 9 D(t)="— fo dke V72 (22)

whereL is the Liouville operator corresponding to Hamil-
tonian (4) and ¢ is an auxiliary parameter ensuring the cor- since the decay rate for energy of the normal mode With
rect dimensions fop(t). The parameter does not appear in =0 is zero(due to the conservation of the total momenjum
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we can expect ¥ to behave as some positive powetkdbr

small k. The long-time behavior oD (t) in Eq. (22) will be |(k)°<f dx . (29

determined by the smak-behavior of 1f,. Following Ref. k?

[5] we will further assume that thedependence of %/ for _X o dkoc— PR 2+ Akxt-2

smallk is the same as in the multiplicative part of the colli-

sion operator in Eq(14). Note that for positivek the denominator remains positive in
Both the relaxation-time approximation and the assumpthe integration range since

tion that thek dependence of the relaxation rate for snka#

the same as in the multiplicative part of the collision operator k* k?

has been widely used in the theory of heat conduction in @X X *+2>0, (27)

insulators[3,5]. A convincing justification of both assump-

tions, however, is lacking. Referenfg] tries to justify both  as can be checked by solving the corresponding quadratic

assumptions at least for wave vectors with snkably the  equation forx?. Introducing the new variablg=k*x we
following reasoning. If only the multiplicative part was kept obtain
in the collision operator the resulting equation would de-

scribe a physical situation when all modes except nmodee 1 ro 1

in equilibrium. In general this is not the case. However, for I(k)x— | dy

any initial nonequilibrium distribution of energy all modes k3Jo K83 W K43 .

except those with very smakl quickly relax to equilibrium. oa”) +4y°— - +4k¥y+2

As a result as far as the sméllmodes are concerned after a (29)

short time the physical situation is similar to the one just

described and the integral part of the collision operator beThe integral appearing in E(R8) is finite and remains finite

comes negligible compared to the multiplicative part. for k=0. As a result, for smalk we havel (k)>k %2 and,
If we accept both approximations for E¢L4) then we  therefore,

expect 1#,sir?(k/2)1 (k) with

1
— ok, (29
2 1 Tk
(k)= f dk’ . , . : .
0 1 K k' 2 K k' With this k dependence for the relaxation rate the time de-
—(cos—+cos— + sin—sin— pendence of the correlation function is determined by the
4\ 2 2 2 2 following integral:
(23
D(t)= | dke < *ip2, 30
This integral can be reduced to an elliptic integral of the first (t)e fo © Uk (30

kind through the substitutior=tan(k’/4):
HereK is a positive constant. Keeping in mind thgt is a
constant for smalk the long-time behavior ob(t) is esti-

* 1
I(k)ocJ dx , (249 Mated to be
0 Pw(X)
1
D(t)* =5 (31)
where t3/5°
2 K This implies that the heat conductivity coefficientliverges.
P (x)=|1— cosz x*+8 smi) (smz ) Indeed, we have
k K\ 2 i f L ime2s ,
+8 sinE X+ 1+CO%) . (25) KMterD]o dr 3/50c |mt (32)

Clearly the divergence ok does not mean that the energy
Integral (24) can be reduced to the Legendre normal formpropagates through the lattice instantaneously. It just implies
and its k dependence can be expressed in terms ofkthe that the Fourier heat law is not valid in the infinite FF3J
dependence for the roots of the fourth-order polynort#é) lattice. We can also estimate the dependence o the size
[20]. Since the calculations are rather involved and we aref the lattice. Following Ref[8] we restrict the integral in
interested only in the smal-behavior ofl (k) we give here Eq. (17) to times smaller than the characteristic time for the
a less rigorous but simpler estimation that gives the samenergy propagatiohl/v, . This leads to the followindN de-
result for smallk. We expand the coefficients in the polyno- pendence foi:
mial in powers ofk and keep the lowest-order terms in front
of each monomial to get ke NS, (33
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Thus we can see that diverges in the thermodynamic limit havior is determined by the smallest nonzero eigenvalue of
which is consistent with Eq.32). the collision operator and has an exponential form. In con-
Apart from thek dependence of the decay rate for thetrast, in our case the collision operator has a continuous spec-
mode energy, its temperature dependence is also of interestum that is bounded from below by zero. This fact allows
It follows from Eq.(14) that as a function of temperature the for the nontrivial time dependence of the correlation function
decay rate is proportional f6°. to be obtained already in the framework of the kinetic equa-
The estimations we have obtained are in rather goodion.
agreement with the results of computer simulations. The di-
vergence of the heat conductivity coefficient a4 with IV. CONCLUDING REMARKS
~0.37 was observed in the numerical studies of the [HPU
model [8,9,11,12. This result is very close to estimation
(33). Similarly, the k®® dependence of the decay rate for
mode energy was observgd]. The temperature dependence
of the decay rate reported in R¢®] is very close toTl? for
weak coupling.
In Ref.[9] the same types dfdependence for the corre-

Applying the Peierls equation to the FPB lattice we
estimated the wave vector and temperature dependence for
the decay rate of the average mode energy, the long-time
behavior of the current correlation function, and the depen-
dence of the coefficient of heat conductivity on the size of
the lattice. The obtained results are in good agreement with
. . : the results of the recent computer simulations. As we used a
Iat!on function andN _dependence fox were obtained by number of strong assumptions it can be of interest to solve
using the mode coupling theory. As a function of temperatur ‘(14 numerically in order to verify if the assumptions are
the decay rate obtained through the mode coupling theor?éorrect and whether the time evolution of mode energies

413 imi i 1/4
hehaves as in the limit of weak coupling and &% fo_r given by Eq.(14) is compatible with the results of computer
strong couplind9]. Thus, the temperature dependence in thesimulations for the case of weak coupling.

. . . . . 2 . .
weak coupling limit is different from oufl” estimation. Recently lattices with external substrate potentials drew
Note, however, that according to R€8] the mode coupling o sigeraple attention since some of them show finite heat

results should be valid for strong coupling and on very Io”gconductivity forN—co [10,22—25. We can apply our analy-
time scales. In general, the mode coupling theory as used i§jg ot Sec il to show that the FPU lattice with added har-
Ref. [9] a!lows one FO make some general s'tatement.s abOLH’lonic on-site potential of the forrﬁ,u,2 is likely to have
the long-time beh_awor (.)f the current cor_relatlon fu_nct|on forfinite heat conductivity for infinite lattice. It is easy to show
a class Of. one-_dlmensmnal lattices wr_ule I.i.d"A') 9IVES @ tnat in this case fok— 0 the harmonic frequency tends to a
more detailed picture of the energy equipartition between th%onstant value while the group velocity becomes propor-

normal modes for the special case of fae=PU lattice for tional tok. The energy of the normal mode wiki+ 0 is still

the weak coupling case. If solved numerically, Ed) wil a constant of motion since coefficie(®) vanishes when at

a}l!ow f(_)r the quantitative comparison of the energy eaUIPAr - st one of thek's is zero. Therefore, we can expect the
tition given by the Peierls equation to the one observed in

computer simulations. We will not attempt here to analyz decay rate of the mode energy to behavékagor small k.

the relation between our result and the mode couplin theo‘?.rhis will lead to thet™*" long-time behavior of the current
although this point clearly deserves attention piing Yorrelation function and, therefore, finite heat conductivity
In a recent publicationi21] it is claimed thatx should for v<<3. Thus, if adding the harmonic on-site potential does

; /3 }
diverge with system sizé asL*® for all momentum con- not appreciably change the™ wave-vector dependence of

serving one-dimensional systems. So far the most careft}re decay rate, we can expect to find finite heat conductivity

computer simulation11] fails to confirm this claim. At in this case.
present, therefore, this issue remains unsettled. ACKNOWLEDGMENTS
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